Senin, 23 April 2012

Reaksi Netralisasi

Reaksi Netralisasi

Konsep paling mendasar dan praktis dalam kimia asam basa tidak diragukan lagi adalah netralisasi. Fakta bahwa asam dan basa dapat saling meniadakan satu sama lain telah dikenal baik sebagai sifat dasar asam basa sebelum perkembangan kimia modern.



a. Netralisasi

Neutralisasi dapat didefinisikan sebagai reaksi antara proton (atau ion hidronium) dan ion hidroksida membentuk air. Dalam bab ini kita hanya mendiskusikan netralisasi di larutan dalam air.
H+ + OH-–> H2O (9.33)
H3O+ + OH-–> 2H2O (9.34)
Jumlah mol asam (proton) sama dengan jumlah mol basa (ion hidroksida).
Stoikiometri netralisasi
nAMAVA = nBMBVB
jumlah mol proton jumlah mol ion hidroksida
subskrip A dan B menyatakan asam dan basa, n valensi, M konsentrasi molar asam atau basa, dan V volume asam atau basa.
Dengan bantuan persamaan di atas, mungkin untuk menentukan konsentrasi basa (atau asam) yang konsentrasinya belum diketahui dengan netralisasi larutan asam (atau basa) yang konsentrasinya telah diketahui. Prosedur ini disebut dengan titrasi netralisasi.
Contoh soal
9.5 titrasi netralisasi
0,500 g NH4Cl tidak murni dipanasakan dengan NaOH berlebih menghasilkan amonia NH3 yang diserap dalam 25,0 cm3 0,200 mol dm-3 asam sulfat. Diperlukan 5,64 cm3 NaOH 0,200 mol.dm-3 untuk menetralkan asam sulfat berlebih. Hitung kemurnian NH4Cl.
Jawab
Ingat asam sulfat adalah asam diprotik. Dengan mengaasumsikan jumlah mol amonia yang dihasilkan x m mol, jumlah mol amonia dan natrium hidroksida dua kali lebih besar dari jumlah mol asam sulfat. Jadi,
x (mmol) + 0,200 (mol dm-3) x 5,64 x 10-3 (dm3)= 2 x 0,200 (mol dm-3) x 25,0 x 10-3(dm3)
x + 1,128 = 10,0
∴ x = 8,872 (mmol)
Karena massa molar amonium khlorida adalah 52,5, 8,872 mmol ekivalen dengan 0,466 g amonium khlorida.
Jadi kemurnian sampel adalah (0,466 g/0,500 g) x 100 = 93 %.

b. Garam

Setiap asam atau h=garam memiliki ion lawannya, dan reaksi asam basa melibatkan ion-ion ini. Dalam reaksi netralisasi khas seperti antara HCl dan NaOH,
HCl+NaOH–>NaCl+H2O(9.35)
asam
basa
garam
air
Selain air, terbentuk NaCl dari ion khlorida, ion lawan dari proton, dan ion natrium, ion lawan basa. Zat yang terbentuk dalam netralisasi semacam ini disebut dengan garam. Asalkan reaksi netralisasinya berlangsung dalam air, baik ion natrium dan ion khlorida berada secara independen sebagai ion, bukan sebagai garam NaCl. Bila air diuapkan, natrium khlorida akan tinggal. Kita cenderung percaya bahwa garam bersifat netral karena garam terbentuk dalam netralisasi. Memang NaCl bersifat netral. Namun, larutan dalam air beberapa garam kadang asam atau basa. Misalnya, natrium asetat, CH3COONa, garam yang dihasilkan dari reaksi antara asam asetat dan natrium hidroksida, bersifat asam lemah.
Sebaliknya, amonium khlorida NH4Cl, garam yang terbentuk dari asam kuat HCl dan basa lemah amonia, bersifat asam lemah. Fenomena ini disebut hidrolisis garam.
Diagram skematik hidrolisis ditunjukkan di Gambar 9.1. Di larutan dalam air, garam AB ada dalam kesetimbangan dengan sejumlah kecil H+ dan OH- yang dihasilkan dari elektrolisis air menghasilkan asam HA dan basa BOH (kesetimbangan dalam arah vertikal). Karena HA adalah asam lemah, kesetimbangan berat ke arah sisi asam, dan akibatnya [H+] menurun. Sebaliknya, BOH adalah basa kuat dan terdisosiasi sempurna, dan dengan demikian todak akan ada penurunan konsentrasi OH-. Dengan adanya disosiasi air, sejumlah H+ dan OH- yang sama akan terbentuk.
Dalam kesetimbangan vertikal di Gambar 9.1, kesetimbangan asam ke arah bawah, dan kesetimbangan basa ke arah atas. Akibatnya [OH-] larutan dalam air meningkat untuk membuat larutannya basa. Penjelasan ini juga berlaku untuk semua garam dari asam lemah dan basa kuat.
Gambar 9.1Hidrolisis garam.
Sebagai rangkuman, dalam hidrolisis garam dari asam lemah dan basa kuat, bagian anion dari garam bereaksi dengan air menghasilkan ion hidroksida.
A- + H2O –> HA + OH- (9.36)
Dengan menuliskan reaksi ini sebagai kesetimbangan, hidrolisis garam dapat diungkapkan dengan cara kuantitatif
A- + H2O HA + OH- (9.37)
Bila h adalah derajat hidrolisis yang menyatakan rasio garam yang terhidrolisis saat kesetimbangan. Tetapan kesetimbangan hidrolisis Kh adalah:
Kh = [HA][OH-]/[A-] = (csh)2/cs(1 – h) = csh2/(1 – h) (9.38)
Kh disebut tetapan hidrolisis, dan cs adalah konsentrasi awal garam. A- adalah basa konjugat dari asam lemah HA dan Kh berhubungan dengan konstanta disosiasi basanya. Akibatnya, hubungan berikut akan berlaku bila konstanta disosiasi asam HA adalah Ka: jadi,
KaKh = Kw (9.39)
Bila h ≪ 1, Ka ≒csh; h ≒√(Kh/cs). Maka konsentrasi [OH-] dan [H+] diberikan oleh ungkapan:
[OH-] = csh ≒√(csKw/Ka) (9.40)
[H+] = Kw/[OH-] ≒√(KwKa/cs) (9.41)
Karena terlibat asam lemah,
Ka/cs < 1,
∴ [H+] < √Kw = 10-7 (9.42)
Jadi, garam dari asam lemah bersifat basa. Dengan cara yang sama, [H+] garam asam lemah dan basa kuta dinyatakan dengan:
[H+] = csh ≒√(csKw/Kb) (9.43)
Karena melibatkan basa lemah,
cs/Kb > 1,
∴ [H+] > √Kw = 10-7 (9.44)
Jadi, garamnya bersifat asam.

c. Kurva titrasi

Dalam reaksi netralisasi asam dan basa, atau basa dengan asam, bagaimana konsentrasi [H+], atau pH, larutan bervariasi? Perhitungan [H+] dalam titrasi asam kuat dengan basa kuat atau sebaliknya basa kuat dengan asam kuat tidak sukar sama sekali. Perhitungan ini dapat dilakukan dengan membagi jumlah mol asam (atau basa) yang tinggal dengan volume larutannya.
Perhitungannya akan lebih rumit bila kombinasi asam lemah dan basa kuat, atau yang melibatkan asam kuat dan basa lemah. [H+] akan bergantung tidak hanya pada asam atau basa yang tinggal, tetapi juga hidrolisis garam yang terbentuk.
Plot [H+] atau pH vs. jumlah asam atau basa yang ditambahkan disebut kurva titrasi (Gambar 9.2). Mari kita menggambarkan kurva titrasi bila volume awal asam VA, konsentrasi asam MA, dan volume basa yang ditambahkan vB dan konsentrasinya adalah MB.

(1) TITRASI ASAM KUAT DAN BASA KUAT.

[1] sebelum titik ekivalen:
Karena disosiasi air dapat diabaikna, jumlah mol H+ sama dengan jumlah sisa asam yang tinggal
[H+] = (MAVA – MBvB)/(VA + vB) (9.45)
[2] Pada titik ekivalen:
Disosiasi air tidak dapat diabaikan di sini.
[H+] = √Kw = 10-7 (9.46)
[3] setelah titik ekivalen:
Jumlah mol basa berlebih sama dengan jumlah mol ion hidroksida. [OH-] dapat diperoleh dengan membagi jumlah mol dengan volume larutan. [OH-] yang diperoleh diubah menjadi [H+].
[OH-] = (MBvB – MAVA)/(VA + vB) (9.47)
[H+] = Kw/[OH-] = (VA + vB)Kw/(MBvB – MAVA) (9.48)
Kurvanya simetrik dekat titik ekivalen karena vB ≒ VA.
Titrasi 10 x 10-3 dm3 asam kuat misalnya HCl 0,1 mol dm-3 dengan basa kuat misalnya NaOH 0,1 mol dm-3 menghasilkan kurva titrasi khas seperti yang ditunjukkan dalam Gambar 9.2(a). Pada tahap awal, perubahan pHnya lambat. Perubahan pH sangat cepat dekat titik ekivalen (vB = 10 x10-3 dm3). Dekat titik ekivalen, pH berubah beberapa satuan hanya dengan penambahan beberapa tetes basa.
Gambar 9.2 Kurva titrasi: (a) Titrasi HCl dengan NaOH. Perubahan pH yang cepat di titik ekivalen bersifat khas.
(b) Titrasi CH3COOH dengan NaOH. Perubahan pH di titik ekivalen tidak begitu cepat.
Gambar 9.3 Kurva titrasi: titrasi NH3 dengan HCl.

2. TITRASI ASAM LEMAH DENGAN BASA KUAT

Hasilnya akan berbeda bila asam lemah dititrasi dengan basa kuat. Titrasi 10 x 10-3 dm3 asam asetat 0,1 mol dm-3 dengan NaOH 0,1 mol dm-3 merupakan contoh khas (Gambar 9.2(b)).
[1] Titik awal: vB = 0. pH di tahap awal lebih besar dari di kasus sebelumnya.
[H+] = MAα (9.49)
α adalah tetapan disosiasi asam asetat.
[2] sebelum titik ekivalen: sampai titik ekivalen, perubahan pH agak lambat.
[3] pada titik ekivalen (vB = 10 x 10-3 dm3): pada titik ini hanya natrium asetat CH3COONa yang ada. [H+] dapat diperoleh dengan cara yang sama dengan pada saat kita membahas hidrolisis garam.
[4] setelah titik ekivalen. [H+] larutan ditentukan oleh konsentrasi NaOH, bukan oleh CH3COONa.
Perubahan pH yang perlahan sebelum titik ekivalen adalah akibat bekerjanya buffer (bagian 9.3 (d)). Sebelum titik ekivalen, terdapat larutan natrium asetat (garam dari asam lemah dan bas kuat) dan asam asetat (asam lemah). Karena keberadaan natrium asetat, kesetimbangan disosiasi natrium asetat
CH3COOH H+ + CH3COO- (9.50)
bergeser ke arah kiri, dan [H+] akan menurun. Sebagai pendekatan [CH3COO-] = cS [HA] ≒ c0.
cS adalah konsentrasi garam, maka
[H+]cS/ c0= Ka,
∴ [H+] = (c0/cS)Ka (9.51)
Bila asam ditambahkan pada larutan ini, kesetimbangan akan bergeser ke kiri karena terdapat banyak ion asetat maa asam yang ditambahkan akan dinetralisasi.
CH3COOH H+ + CH3COO- (9.52)
Sebaliknya, bila basa ditambahkan, asam asetat dalam larutan akan menetralkannnya. Jadi,
CH3COOH + OH- H2O + CH3COO- (9.53) Jadi [H+] hampir tidak berubah.

(3) TITRASI BASA LEMAH DENGAN ASAM KUAT

Titrasi 10 x 10-3 dm3 basa lemah misalnya larutan NH3 0,1 mol dm-3 dengan asam kuat misalnya HCl 0,1 mol dm-3 (Gambar 9.3). Dalam kasus ini, nilai pH pada kesetimbangan agak lebih kecil daripada di kasus titrasi asam kuat dengan basa kuat. Kurvanya curam, namun, perubahannya cepat di dekat titik kesetimbangan. Akibatnya titrasi masih mungkin asalkan indikator yang tepat dipilih, yakni indikator dengan rentang indikator yang sempit.

(4) TITRASI BASA LEMAH (ASAM LEMAH) DENGAN ASAM LEMAH (BASA LEMAH).

Dalam titrasi jenis ini, kurva titrasinya tidak akan curam pada titik kesetimbangan, dan perubahan pHnya lambat. Jadi tidak ada indikator yang dapat menunjukkan perubahan warna yang jelas. Hal ini berarti titrasi semacam ini tidak mungkin dilakukan.

d. Kerja bufer

Kerja bufer didefinisikan sebagai kerja yang membuat pH larutan hampir tidak berubah dengan penambahan asam atau basa. Larutan yang memiliki kerja bufer disebut larutan bufer. Sebagian besar larutan bufer terbentuk dari kombinasi garam (dari asam lemah dan basa kuat) dan aam lemahnya. Cairan tubuh organisme adalah larutan bufer, yang akan menekan perubahan pH yang cepat, yang berbahaya bagi makhluk hidup.
Nilai pH larutan bufer yang terbuat dari asam lemah dan garamnya dapat dihitung dengan menggunakan persamaan berikut.
pH = pKa + log([garam]/[asam]) (9.54)
Tabel 9.2 memberikan beberapa larutan bufer.
Tabel 9.2 Beberapa larutan bufer.

Contoh soal 9.5 pH larutan bufer
Tiga larutan (a), (b) dan (c) mengandung 0,10 mol dm-3 asam propanoat (Ka = 1,80 x 10-5 mol dm-3) dan (a) 0,10 mol dm-3, (b) 0,20 mol dm-3 and (c) 0,50 mol dm-3 natrium propanoat. Hitung pH larutan.
Jawab
Substitusikan nilai yang tepat pada persamaan (9.54)
  1. pH = pKa + log([garam]/[asam]) = pKa + log([0,1]/[0,1]) = pKa + log1 = 4,75
  2. pH = pKa + log([0,2]/[0,1])= pKa + log 2 = 5,05
  3. pH = pKa + log([0,5]/[0,1]) = pKa + log5 = 5,45
Lihat bahwa nilai ([garam]/[asam]) berubah dari 1 ke 5, tetapi pH hanya berubah sebesar 0,7.

e. Indikator

Pigmen semacam fenolftalein dan metil merah yang digunakan sebagai indikator titrasi adalah asam lemah (disimbolkan dengan HIn) dan warnanya ditentukan oleh [H+] larutan. Jadi,
HIn H+ + In- …. (9.55)
Rasio konsentrasi indikator dan konjgatnya menentukan warna larutan diberikan sebagai:
KIn = [H+][In-]/[HIn], ∴ [In-]/[HIn] = KIn/[H+] … (9.56)
KIn adalah konstanta disosiasi indikator.
Rentang pH yang menimbulkan perubahan besar warna indikator disebut dengan interval transisi. Alasan mengapa ada sedemikian banyak indikator adalah fakta bahwa nilai pH titik ekivalen bergantung pada kombinasi asam dan basa. Kunci pemilihan indikator bergantung pada apakah perubahan warna yang besar akan terjadi di dekat titik ekivalen. Di Tabel 9.3 didaftarkan beberapa indikator penting.
Tabel 9.3 Indikator penting dan interval transisinya.
Indikatorinterval transisiperubahan warna(asam–>basa)
Biru timol1,2-2,8merah –> kuning
Metil oranye3,1-4,4merah –> kuning
Metil merah4,2-6,3merah –> kuning
bromotimol biru6,0-7,6kuning–> biru
merah kresol7,2-8,8kuning –> merah
fenolftalein8,3-10,0tak berwarna–> merah
alizarin kuning10,2-12,0kuning–> merah
Contoh soal 9.6 Titrasi netralisasi campuran, bagaimana menggunakan indikator.
25 dm3 larutan mengandung NaOH dan Na2CO3 dititrasi dengan 0,100 mol.dm-3 HCl dengan indikator fenolftalein. Warna indikator hilang ketika 30,0 dm3 HCl ditambahkan. Metil oranye kemudian ditambahkan dan titrasi dilanjutkan. 12,5 dm3 HCl diperlukan agar warna metil oranye berubah. Hitung konsentrasi NaOH dan Na2CO3 dalam larutan.
Jawab
Asam karbonat adalah asam diprotik, dan netralisasi berlangsung dalam reaksi dua tahap
CO32- + H+ –> HCO3- ;
HCO3 - + H+ –> H2O + CO2
Tahap pertama netralisasi campuran NaOH-Na2CO3 tercapai saat fenolftalein berubah warna.
Perubahan warna metil oranye menandakan akhir tahap kedua netralisasi natrium karbonat.
Jadi, jumlah NaOH-Na2CO3 adalah 0,100 mol dm-3 x 30,0 x 10-3 dm3 = 3,0 x 10-3 mol
sebagaimana dinyatakan dalam tahap pertama netralisasi. Jumlah Na2CO3 adalah 0,100 mol.dm-3 x 12,5 x 10-3 dm3 = 1,25 x 10-3 mol sebagaimana dinyatakan dalam tahap kedua netralisasi. Jumlah NaOH adalah selisih antara kedua bilangan tersebut, 1,75 x 10-3 mol. Jadi
[Na2CO3] = 1,25 x 10-3 mol/25,0 x 10-3 dm3 = 0,050 mol dm-3
[NaOH] = 1,75 x 10-3 mol/25,0 x 10-3 dm3 = 0,070 mol dm-3

Latihan

9.1 Asam basa konjugat
Tuliskan reaksi disosiasi senyawa berikut, termasuk air yang terlibat, dan tandai pasangan asam basa konjugasinya. (a) asam format HCOOH, (b) asam perkhlorat HClO4
9.1 Jawab
(a) HCOOH + H2O H3O+ + HCOO-
asam1 basa2 asam konjugat2 basa konjugat 1
(b) HClO4 + H2O H3O+ + ClO4-
asam1 basa2 asam konjugat2 basa konjugat 1
9.2 Asam basa konjugat
Tetapan disosiasi pasangan asam basa konjugat adalah Ka dan Kb. Buktikan bahwa Ka x Kb = Kw Kw adalah tetapan hasil kali ion air.
9.2 Jawab
Lihat halaman yang relevan di teks.
9.3 Asam basa Lewis
Nyatakan manakah asam dan basa Lewis dalam reaksi-reaksi berikut.
(a) Cu2+ + 4NH3 Cu(NH3)42+
(b) I- + I2 I3-
(c ) Fe2+ + 6H2O Fe(H2O)63+
9.3 Jawab
(a) Cu2+ + 4NH3 Cu(NH3)42+, Cu2+ : asam Lewis, NH3: basa Lewis.
(b) I- + I2 I3-, I- : asam Lewis, I2: basa Lewis.
(c ) Fe2+ + 6H2O Fe(H2O)63+ Fe2+: asam Lewis, H2O: basa Lewis.
9.4 Konsentrasi ion hidrogen dan pH asam kuat
Asam perkhlorat adalah asam kuat, dan disosiasinya dapat dianggap lengkap. Hitung konsentrasi ion hidrogen [H+] dan pH 5,0 mol dm-3 asam ini.
9.4 Jawab
[H+] = 5,0×10-3mol dm-3; pH = -log[H+] = 2,30
9.5 Konsentrasi ion hidrogen dan pH asam lemah
Hitung konsentrasi ion hidrogen dan pH asam asetat 0,001 mol dm-3, 0,01 mol dm-3 dan 0,1 mol dm-3. Ka asam asetat pada 25°C adalah 1,75 x 10-3 mol dm-3.
9.5 Jawab
Kira-kira [H+] = √(csKa). Maka [H+] dan pH dinyatakan sebagai berikut.
Asam asetat 0,001 mol dm-3; [H+] = 1,32 x 10-4 mol dm-3, pH = 3,91. Asam asetat 0,01 mol dm-3; [H+] = 4,18 x 10-4 mol dm-3, pH = 3,39. Asam asetat 0,1 mol dm-3; [H+] = 1,32 x 10-3 mol dm-3, pH = 2,28.
9.6 Perhitungan tetapan disosiasi
Dalam larutan 0,5 mol dm-3, disosiasi asam urat C5H4N4O3 sebesar 1,6 %. Tentukan Ka asam urat.
9.6 Jawab
1,6 x 10-2 = [C5H3N4O3-]/0,5 mol dm-3,
[C5H3N4O3-]= [H+] = 8,0 x 10-3 mol dm-3. Jadi,
Ka = (8,0 x 10-3)2/0,50 = 1,28 x 10-4 mol dm-3.
9.7 Titrasi Netralisasi
Suatu detergen mengandung amonia. 25,37 g detergen dilarutkan dalam air untuk menghasilkan 250 cm3 larutan. Diperlukan 37,3 cm3 asam sulfat 0,360 mol dm-3 ketika 25,0 cm3 larutan ini dititrasi. Hitung persen massa amonia dalam detergen.
9.7 Jawab
18,0 %.
9.8 Larutan Bufer
(1) Hitung pH bufer yang konsentrasi asam formatnya HCOOH (Ka = 1,8 x10-4 mol dm-3) 0,250 mol dm-3, dan konsentrasi natrium format HCOONa-nya 0,100 mol dm-3.
(2) Anggap 10 cm3 NaOH 6,00 x 10-3 mol dm-3 ditambahkan ke 500 cm3 larutan bufer ini. Hitung pH larutan setelah penambahan NaOH.
9.8 Jawab
(1) [H+] = 4,5 x 10-4 mol dm-3, pH = 3,35. (2) Jumlah mol HCOOH, OH- dan HCOO- sebelum dan sesudah penambahan NaOH ditunjukkan dalam tabel berikut.
m molHCOOHOH-HCOO
Sebelum1256050
sesudah650110
Perhatikan setelah penambahan volume larutan menjadi 510 cm3. 1,8 x 10-4 mol dm-3 = ([H+] x 0,216)/(0,128), [H+] = 1,06 x 10-4 mol dm-3, pH = 3,97 Perubahan pH agak kecil walaupun sejumlah cukup besar basa kuat ditambahkan.

Kesetimbangan Kimia

Bab ini membahas prinsip dasar kesetimbangan kimia. Kita akan mempelajari reaksi timbal balik dan apa yang terjadi di sebuah sistem tertutup. Ini akan membawa kita kepada konsep kesetimbangan dinamis dan akan mengajak kita berpikir mengenai arti istilah ‘pergeseran kesetimbangan’.
Reaksi timbal balik

Reaksi timbal balik adalah reaksi yang, tergantung keadaan, dapat mengalir ke dua arah.

Apabila Anda meniupkan uap panas ke sebuah besi yang panas, uap panas ini akan bereaksi dengan besi dan membentuk sebuah besi oksida magnetik berwarna hitam yang disebut ferri ferro oksida atau magnetit, Fe3O4.



Hidrogen yang terbentuk oleh reaksi ini tersapu oleh aliran uap.


Dalam keadaan lain, hasil-hasil reaksi ini akan saling bereaksi. Hidrogen yang melewati ferri ferro oksida panas akan mengubahnya menjadi besi, dan uap panas juga akan terbentuk.



Uap panas yang kali ini terbentuk tersapu oleh aliran hidrogen.



Reaksi ini dapat berbalik, tapi dalam keadaan biasa, reaksi ini menjadi reaksi satu arah. Produk dari reaksi satu arah ini berada dalam keadaan terpisah dan tidak dapat bereaksi satu sama lain sehingga reaksi sebaliknya tidak dapat terjadi.
Reaksi timbal balik yang terjadi pada sistem tertutup

Sistem tertutup adalah situasi di mana tidak ada zat yang ditambahkan atau diambil dari sistem tersebut. Tetapi energi dapat ditransfer ke luar maupun ke dalam.

Pada contoh yang baru kita bahas tadi, Anda harus membayangkan sebuah besi yang dipanaskan oleh uap dalam sebuah kotak tertutup. Panas ditambahkan ke dalam sistem ini, namun tidak satu zat pun yang terlibat dalam reaksi ini dapat keluar dari kotak. Keadaan demikian disebut sistem tertutup.

Pada saat ferri ferro oksida dan hidrogen mulai terbentuk, kedua zat ini akan saling bereaksi kembali untuk membentuk besi dan uap panas yang ada pada mulanya. Coba pikirkan, kira-kira apa yang Anda temukan ketika menganalisis campuran ini setelah beberapa saat?

Anda akan sadar, bahwa Anda telah membentuk situasi yang disebut kesetimbangan dinamis.
Kesetimbangan Dinamis

Mempelajari kesetimbangan dinamis secara visual

Bayangkan sebuah zat yang dapat berada dalam dua bentuk/warna, biru dan merah, masing-masing dapat bereaksi untuk menjadi yang lain (biru menjadi merah, merah menjadi biru). Kita akan membiarkan mereka bereaksi dalam sistem tertutup, di mana tidak ada satu pun yang dapat keluar dari sistem ini.

Biru dapat berubah menjadi merah jauh lebih cepat daripada merah menjadi biru. Dan berikut adalah peluang (probabilitas) dari perubahan yang dapat terjadi. 3/6 biru berubah menjadi merah, dan 1/6 merah berubah menjadi biru.



Anda dapat mencobanya dengan kertas berwarna yang digunting kecil-kecil (dua warna) dan sebuah dadu.

Berikut adalah hasil dari ‘reaksi’ (simulasi) yang saya lakukan. Saya mulai dengan 16 potongan kertas biru. Saya melihat potongan-potongan itu satu per satu secara bergantian dan memutuskan apakah kertas yang saya lihat dapat berubah warna dengan melempar dadu.

Kertas biru dapat saya ganti dengan kertas merah apabila angka 4, 5 dan 6 keluar.

Kertas merah dapat saya ganti dengan kertas biru apabila angka 6 keluar pada saat saya melihat sebuah kertas merah.

Ketika saya selesai melihat ke-16 kertas itu, saya mulai lagi dari awal. Tapi tentu saja kali ini saya mulai dengan pola yang berbeda. Diagram di bawah ini menunjukkan hasil yang saya dapat setelah saya mengulang proses ini sebanyak 11 kali (dan saya tambahkan 16 potongan kertas biru yang saya punya pada awal simulasi).



Anda dapat melihat bahwa ‘reaksi’ berlangsung terus menerus. Pola yang terbentuk dari kertas merah dan biru terus berubah. Tapi, yang mengejutkan ialah, jumlah keseluruhan dari masing-masing kertas warna biru dan merah tetap sama, di mana dalam berbagai situasi, kita dapatkan 12 kertas warna merah dan 4 kertas warna biru.
Catatan : Sejujurnya, hasil akhir ini diperoleh secara kebetulan karena simulasi ini dilakukan dengan jumlah kertas yang sangat sedikit. Apabila Anda melakukan simulasi ini dengan jumlah kertas yang lebih banyak (misalnya beberapa ribu kertas), Anda akan mendapati proporsi yang terbentuk akan mendekati 75% merah dan 25% biru (suatu simulasi yang sangat membosankan, tentunya).

Apabila Anda mempunyai sejumlah besar partikel yang turut ambil bagian dalam sebuah reaksi kimia, proporsinya akan mendekati 75%:25%.

Penjelasan tentang "kesetimbangan dinamis"

Reaksi (simulasi) di atas telah mencapai kesetimbangan dalam arti tidak akan perubahan lebih lanjut dalam jumlah kertas biru dan merah. Namun demikian, reaksi ini masih terus berlangsung. Untuk setiap kertas merah yang berubah warna jadi biru, ada kertas biru yang berubah jadi merah di suatu tempat dalam campuran tersebut.

Inilah yang kita kenal sebagai "kesetimbangan dinamis". Kata "dinamis" menunjukkan bahwa reaksi itu masih terus berlangsung.

Anda dapat menggunakan tanda panah khusus untuk memperlihatkan bahwa ada kesetimbangan dinamis pada persamaan reaksi. Untuk kasus yang kita bahas di atas, Anda dapat menulis seperti demikian :



Yang perlu kita perhatikan di sini ialah, ini tidak hanya berarti bahwa reaksi tersebut merupakan reaksi timbal balik, tapi ini menunjukkan bahwa reaksi ini adalah reaksi timbal balik yang berada dalam kesetimbangan dinamis.
Pergeseran Kesetimbangan

Pergeseran dari kiri ke kanan dalam persamaan (dalam hal ini, dari warna biru ke warna merah) disebut ‘pergeseran kesetimbangan ke kanan’ dan dari kanan ke kiri disebut ‘pergeseran kesetimbangan ke kiri’

Posisi kesetimbangan
Dalam contoh yang kita pakai, campuran kesetimbangan terdiri dari lebih banyak warna merah daripada warna biru. Posisi kesetimbangan dapat menggambarkan situasi ini. Kita dapat mengatakan bahwa:

  • Posisi kesetimbangan condong ke merah
  • Posisi kesetimbangan condong ke sebelah kanan

Apabila kondisi praktikum berubah (dengan mengubah peluang terjadinya pergeseran kesetimbangan ke kanan maupun ke kiri), komposisi dari campuran kesetimbangan itu sendiri pun akan berubah.
Contohnya, apabila dengan mengubah kondisi praktikum kita dapat memproduksi lebih banyak warna biru di dalam campuran kesetimbangan, kita bisa mengatakan bahwa "Posisi kesetimbangan bergeser ke kiri" atau "Posisi kesetimbangan bergeser ke warna biru".
Catatan: Apabila Anda tertarik, cobalah perbesar peluang warna merah berubah menjadi biru dari 1/6 menjadi 2/6 untuk melihat efeknya pada posisi kesetimbangan. Dengan kata lain, biarkanlah warnanya berubah apabila angka 5 atau angka 6 keluar pada saat dadu dilempar.

Mencapai kesetimbangan dari sisi yang lain

Apa yang terjadi bila Anda memulai reaksi dengan warna merah dan bukan warna biru namun tetap memberi kesempatan untuk berubah warna seperti di contoh pertama ? Ini adalah hasil dari percobaan saya.



Sekali lagi Anda dapat melihat konfigurasi yang terjadi sama persis dengan percobaan pertama di mana kita mulai dengan warna biru. Anda akan mendapat konfigurasi kesetimbangan yang sama tanpa dipengaruhi dari sisi mana Anda memulai reaksi.
Ingat: Anda tidak akan mendapat hasil yang sama bila menggunakan jumlah potongan kertas (yang melambangkan jumlah partikel) yang terlalu sedikit. Fluktuasi perubahan akan sangat mudah terlihat. Sekali lagi, apabila Anda menggunakan potongan kertas dalam jumlah besar, proporsi kesetimbangan akan menjadi 75% merah dan 25% biru. Dengan jumlah potongan kertas yang saya gunakan, kita mendapat hasil reaksi yang sangat dekat dengan proporsi rata-rata.

Kesetimbangan Dinamis, lagi, dengan lebih formal

Kecepatan Reaksi

Ini adalah persamaan untuk sebuah reaksi biasa yang telah mencapai kesetimbangan dinamis.



Bagaimana reaksi ini bisa mencapai keadaan tersebut? Anggap saja kita mulai dengan A dan B.

Pada awal reaksi, konsentrasi A dan B pada mula-mula ada pada titik maksimum, dan itu berarti kecepatan reaksi juga ada pada titik maksimum.



Seiring berjalannnya waktu, A dan B bereaksi dan konsentrasinya berkurang. Ini berarti, jumlah partikelnya berkurang dan kesempatan bagi partikel A dan B untuk saling bertumbukan dan bereaksi berkurang, dan ini menyebabkan kecepatan reaksi juga berangsur-angsur berkurang.

Pada awalnya tidak ada C dan D sama sekali sehingga tidak mungkin ada reaksi di antara keduanya. Seiring berjalannya waktu, konsentrasi C dan D bertambah banyak dan keduanya menjadi mudah bertumbukan dan bereaksi.

Dengan berlangsungnya waktu, kecepatan reaksi antara C dan D pun bertambah.



Akhirnya, kecepatan reaksi antara keduanya mencapai titik yang sama di mana kecepatan reaksi A dan B berubah menjadi C dan D sama dengan kecepatan reaksi C dan D berubah menjadi A dan B kembali.



Pada saat ini, tidak akan ada lagi perubahan pada jumlah A, B, C, D di dalam campuran. Begitu ada partikel yang berubah, partikel tersebut terbentuk kembali berkat adanya reaksi timbal balik. Pada saat inilah kita mencapai kesetimbangan kimia.
Rangkuman

Kesetimbangan kimia terjadi pada saat Anda memiliki reaksi timbal balik di sebuah sistem tertutup. Tidak ada yang dapat ditambahkan atau diambil dari sistem itu selain energi. Pada kesetimbangan, jumlah dari segala sesuatu yang ada di dalam campuran tetap sama walaupun reaksi terus berjalan. Ini dimungkinkan karena kecepatan reaksi ke kanan dan ke kiri sama.

Apabila Anda mengubah keadaan sedemikian rupa sehingga mengubah kecepatan relatif reaksi ke kanan dan ke kiri, Anda akan mengubah posisi kesetimbangan, karena Anda telah mengubah faktor dari sistem itu sendiri. Efek dari perubahan berbagai faktor dalam sistem terhadap posisi kesetimbangan akan dibahas pada bab yang lain.

Hidrolisis Garam

Pencampuran larutan asam dengan larutan basa akan menghasilkan garam dan air. Namun demikian, garam dapat bersifat asam, basa maupun netral. Sifat garam bergantung pada jenis komponen asam dan basanya. Garam dapat terbentuk dari asam kuat dengan basa kuat, asam lemah dengan basa kuat, asam kuat dengan basa lemah, atau asam lemah dengan basa lemah. Jadi, sifat asam basa suatu garam dapat ditentukan dari kekuatan asam dan basa penyusunnya. Sifat keasaman atau kebasaan garam ini disebabkan oleh sebagian garam yang larut bereaksi dengan air. Proses larutnya sebagian garam bereaksi dengan air ini disebut hidrolisis (hidro yang berarti air dan lisis yang berarti peruraian).



1. Garam dari Asam Kuat dengan Basa Kuat
Asam kuat dan basa kuat bereaksi membentuk garam dan air. Kation dan anion garam berasal dari elektrolit kuat yang tidak terhidrolisis, sehingga larutan ini bersifat netral, pH larutan ini sama dengan 7.
Contoh
Larutan KCl berasal dari basa kuat KOH terionisasi sempurna membentuk kation dan anionnya. KOH terionisasi menjadi H + dan Cl - . Masing-masing ion tidak bereaksi dengan air, reaksinya dapat ditulis sebagai berikut.
KCl (aq) → K + (aq) + Cl - (aq)
K + (aq) + H 2 O (l) →
Cl - (aq) + H 2 O (l) →

2. Garam dari Asam Kuat dengan Basa Lemah
Garam yang terbentuk dari asam kuat dengan basa lemah mengalami hidrolisis sebagian (parsial) dalam air. Garam ini mengandung kation asam yang mengalami hidrolisis. Larutan garam ini bersifat asam, pH <7. Contoh Amonium klorida (NH 4 Cl) merupakan garam yang terbentuk dari asam kuat, HCl dalam basa lemah NH 3 . HCl akan terionisasi sempurna menjadi H + dan Cl - sedangkan NH 3 dalam larutannya akan terionisasi sebagian membentuk NH 4 + dan OH - . Anion Cl - berasal dari asam kuat tidak dapat terhidrolisis, sedangkan kation NH 4 + berasal dari basa lemah dapat terhidrolisis. NH 4 Cl (aq) → NH 4 + (aq) + Cl - (aq) Cl - (aq) + H 2 O (l) → NH 4 + (aq) + H 2 O (l) → NH 3 (aq) + H 3 O + (aq) Reaksi hidrolisis dari amonium (NH 4 + ) merupakan reaksi kesetimbangan. Reaksi ini menghasilkan ion oksonium (H 3 O + ) yang bersifat asam (pH<7). Secara umum reaksi ditulis: BH + + H 2 O → B + H 3 O + 3. Garam dari Asam Lemah dengan Basa Kuat Garam yang terbentuk dari asam lemah dengan basa kuat mengalami hidrolisis parsial dalam air. Garam ini mengandung anion basa yang mengalami hidrolisis. Larutan garam ini bersifat basa (pH > 7).
Contoh
Natrium asetat (CH 3 COONa) terbentuk dari asam lemah CH 3 COOH dan basa kuat NaOH. CH 3 COOH akan terionisasi sebagian membentuk CH 3 COO - dan Na + . Anion CH 3 COO - berasal dari asam lemah yang dapat terhidrolisis, sedangkan kation Na + berasal dari basa kuat yang tidak dapat terhidrolisis.
CH 3 COONa (aq) → CH 3 COO - (aq) + Na + (aq)
Na + (aq) + H 2 O (l) →
CH 3 COO - (aq) + H 2 O (l) → CH 3 COOH (aq) + OH - (aq)
Reaksi hidrolisis asetat (CH 3 COO ‑ ) merupakan reaksi kesetimbangannya. Reaksi ini menghasilkan ion OH ‑ yang bersifat basa (pH > 7). Secara umum reaksinya ditulis:
A - + H 2 O → HA + OH -
4. Garam dari Asam Lemah dengan Basa Lemah
Asam lemah dengan basa lemah dapat membentuk garam yang terhidrolisis total (sempurna) dalam air. Baik kation maupun anion dapat terhidrolisis dalam air. Larutan garam ini dapat bersifat asam, basa, maupun netral. Hal ini bergantung dari perbandingan kekuatan kation terhadap anion dalam reaksi dengan air.
Contoh
Suatu asam lemah HCN dicampur dengan basa lemah, NH 3 akan terbentuk garam NH 4 CN. HCN terionisasi sebagian dalam air membentuk H + dan CN - sedangkan NH 3 dalam air terionisasi sebagian membentuk NH4+ dan OH-. Anion basa CN - dan kation asam NH 4 + dapat terhidrolisis di dalam air.
NH 4 CN (aq) → NH 4 + (aq) + CN - (aq)
NH 4 + (aq) + H 2 O → NH 3(aq) + H 3 O (aq) +
CN - (aq) + H 2 O (e) → HCN (aq) + OH - (aq)
Sifat larutan bergantung pada kekuatan relatif asam dan basa penyusunnya (Ka dan Kb)
- Jika Ka < Kb (asam lebih lemah dari pada basa) maka anion akan terhidrolisis lebih banyak dan larutan bersifat basa. - jika Ka > Kb (asam lebih kuat dari pada basa) maka kation akan terhidrolisis lebih banyak dalam larutan bersifat asam.
- Jika Ka = Kb (asam sama lemahnya dengan basa) maka larutan bersifat netral.

0 komentar:

:a: :b: :c: :d: :e: :f: :g: :h: :i: :j: :k: :l: :m: :n:

Posting Komentar